WEIGHTED COMPOSITION OPERATORS (1+ϵ)φ_(r ) ON BERGMAN TYPE SPACES 〖 A〗_(z+ϵ)^(1+ϵ) WITH DOUBLE WEIGHTED (z+ϵ)

Auteurs

  • BUSHARA EISA HAMAD ABDALLA Assistant of professor Mathematics, Department of Mathematics White Nile University, Kosti, Sudan Auteur

DOI :

https://doi.org/10.5281/zenodo.14194124

Mots-clés :

Weighted composition operator, weighted Bergman space, double weight

Résumé

This study investigates the boundedness , compactness, essential norm and the Schatten class of weighted composition operators (1+ϵ)C_(φ_r ) on Bergman types spaces A_(z+ϵ)^(1+ϵ) with double weight (z+ϵ). Let X=(1+ϵ)∈H(D):(1+ϵ)C_(φ_r ) :A_(z+ϵ)^(1+ϵ)→A_(z+ϵ)^(1+ϵ) is bounded. For some regular weights (z+ϵ), the researcher obtains that X=H^∞ if and only if φ_r is a finite Blaschke product.

Téléchargements

Publiée

2024-11-01

Comment citer

HAMAD ABDALLA, B. E. (2024). WEIGHTED COMPOSITION OPERATORS (1+ϵ)φ_(r ) ON BERGMAN TYPE SPACES 〖 A〗_(z+ϵ)^(1+ϵ) WITH DOUBLE WEIGHTED (z+ϵ). Journal of Afro-Asian Studies, 6(23), 29. https://doi.org/10.5281/zenodo.14194124